User:Tomruen/Small symmetric graphs: Difference between revisions

Line 221: Line 221:

| 2 || K<sub>2</sub>||[[File:1-simplex t0.svg|60px]] || 1 || 1 || (2₁ 1₂) || 2K<sub>1</sub>|| || 0 || 0 || 2|| [https://www.weddslist.com/rmdb/1graph.php?gr=k2 WL]

| 2 || K<sub>2</sub>||[[File:1-simplex t0.svg|60px]] || 1 || 1 || (2₁ 1₂) || 2K<sub>1</sub>|| || 0 || 0 || 2|| [https://www.weddslist.com/rmdb/1graph.php?gr=k2 WL]

|-

|-

| 3 || K<sub>3</sub><BR>[[Triangle]]||[[File:2-simplex t0.svg|60px]] || 3 || 2 || (3₂ 3₂) || 3K<sub>1</sub>|| || 0 || 0 || 6|| [https://www.weddslist.com/rmdb/1graph.php?gr=k3 WL] [https://mathworld.wolfram.com/TriangleGraph.html MW]

| 3 || K<sub>3</sub><BR>[[Triangle]]||[[File:2-simplex t0.svg|60px]] || 3 || 2 || (3₂ 3₂) || 3K<sub>1</sub>|| || 0 || 0 || 6|| [https://www.weddslist.com/rmdb/1graph.php?gr=k3 WL] [https://mathworld.wolfram.com/TriangleGraph.html MW]

|- style=”background-color:#ffffc0″

|- style=”background-color:#ffffc0″

| 4 || K<sub>4</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[tetrahedron]]||[[File:3-simplex t0.svg|60px]] || 6 || 3 || (4₃ 6₂) || 4K<sub>1</sub>|| || || || 24|| [https://www.weddslist.com/rmdb/1graph.php?gr=k4 WL] [https://mathworld.wolfram.com/TetrahedralGraph.html MW]

| 4 || K<sub>4</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[tetrahedron]]||[[File:3-simplex t0.svg|60px]] || 6 || 3 || (4₃ 6₂) || 4K<sub>1</sub>|| || || || 24|| [https://www.weddslist.com/rmdb/1graph.php?gr=k4 WL] [https://mathworld.wolfram.com/TetrahedralGraph.html MW]

|- style=”background-color:#ffffc0″

|- style=”background-color:#ffffc0″

| 4 || C<sub>4</sub><BR>[[square]]||[[File:Regular_polygon_4_annotated.svg|60px]] || 4 || 2 || (4₂ 4₂) || 2K<sub>2</sub>||[[File:Regular star figure 2(2,1).svg|60px]] || 2 || 1 || 8|| [https://www.weddslist.com/rmdb/1graph.php?gr=c4 WL] [https://mathworld.wolfram.com/SquareGraph.html MW]

| 4 || C<sub>4</sub><BR>[[square]]||[[File:Regular_polygon_4_annotated.svg|60px]] || 4 || 2 || (4₂ 4₂) || 2K<sub>2</sub>||[[File:Regular star figure 2(2,1).svg|60px]] || 2 || 1 || 8|| [https://www.weddslist.com/rmdb/1graph.php?gr=c4 WL] [https://mathworld.wolfram.com/SquareGraph.html MW]

|-

|-

| 5 || K<sub>5</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[5-cell]]||[[File:4-simplex t0.svg|60px]] || 10 || 4 || (5₄ 10₂) || 5K<sub>1</sub>|| || 0 || 0 || 120|| [https://www.weddslist.com/rmdb/1graph.php?gr=k5 WL] [https://mathworld.wolfram.com/PentatopeGraph.html MW]

| 5 || K<sub>5</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[5-cell]]||[[File:4-simplex t0.svg|60px]] || 10 || 4 || (5₄ 10₂) || 5K<sub>1</sub>|| || 0 || 0 || 120|| [https://www.weddslist.com/rmdb/1graph.php?gr=k5 WL] [https://mathworld.wolfram.com/PentatopeGraph.html MW]

|-

|-

| 5 || C<sub>5<sub><BR>[[pentagon]]||[[File:Regular_polygon_5_annotated.svg|60px]][[File:Regular star polygon 5-2.svg|60px]] || 5 || 2 || (5₂ 5₂) || || || || || 10|| [https://www.weddslist.com/rmdb/1graph.php?gr=c5 WL] [https://mathworld.wolfram.com/CycleGraph.html MW]

| 5 || C<sub>5<sub><BR>[[pentagon]]||[[File:Regular_polygon_5_annotated.svg|60px]][[File:Regular star polygon 5-2.svg|60px]] || 5 || 2 || (5₂ 5₂) || || || || || 10|| [https://www.weddslist.com/rmdb/1graph.php?gr=c5 WL] [https://mathworld.wolfram.com/CycleGraph.html MW]

|- style=”background-color:#ffffc0″

|- style=”background-color:#ffffc0″

| 6 || K<sub>6</sub><BR>[[N-skeleton|Sk<sub>1</sub>]][[5-simplex]]||[[File:5-simplex t0.svg|60px]] || 15 || 5 || (6₅ 15₂) || 6K<sub>1</sub>|| || 0 || 0 || 720|| [https://www.weddslist.com/rmdb/1graph.php?gr=k6 WL]

| 6 || K<sub>6</sub><BR>[[N-skeleton|Sk<sub>1</sub>]][[5-simplex]]||[[File:5-simplex t0.svg|60px]] || 15 || 5 || (6₅ 15₂) || 6K<sub>1</sub>|| || 0 || 0 || 720|| [https://www.weddslist.com/rmdb/1graph.php?gr=k6 WL]

|- style=”background-color:#ffffc0″

|- style=”background-color:#ffffc0″

| 6 || K<sub>2,2,2</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[octahedron]]||[[File:Complex tripartite graph octahedron.svg|60px]] || 12 || 4 || (6₄ 12₂) || 3K<sub>2</sub>||[[File:Regular star figure 3(2,1).svg|60px]] || 3 || 1 || 48|| [https://www.weddslist.com/rmdb/1graph.php?gr=k2,2,2 WL] [https://mathworld.wolfram.com/OctahedralGraph.html MW]

| 6 || K<sub>2,2,2</sub><BR>[[N-skeleton|Sk<sub>1</sub>]] [[octahedron]]||[[File:Complex tripartite graph octahedron.svg|60px]] || 12 || 4 || (6₄ 12₂) || 3K<sub>2</sub>||[[File:Regular star figure 3(2,1).svg|60px]] || 3 || 1 || 48|| [https://www.weddslist.com/rmdb/1graph.php?gr=k2,2,2 WL] [https://mathworld.wolfram.com/OctahedralGraph.html MW]

A symmetric graph (arc-transitive graph) is a graph that is both vertex transitive and edge transitive.

Key

Families

Generalized orthoplex, multipartite graphs
Bipartite Tripartite 4-partite 5-partite 6-partite
K2,2 K3,3 K4,4 K5,5 K6,6 K2,2,2 K3,3,3 K4,4,4 K2,2,2,2 K3,3,3,3 K2,2,2,2,2 K2,2,2,2,2,2

List

Symmetric graphs with 2 to 12 vertices
v Graph Complement graph Aut Src
Name Graph Edges Degree Configuration Name Graph Edges Degree
2 K2 1 1 (2₁ 1₂) 2K1 0 0 2 WL
3 K3
Triangle
3 2 (3₂ 3₂) 3K1 0 0 6 WL MW
4 K4
Sk1 tetrahedron
6 3 (4₃ 6₂) 4K1 0 0 24 WL MW
4 C4
square
4 2 (4₂ 4₂) 2K2 2 1 8 WL MW
5 K5
Sk1 5-cell
10 4 (5₄ 10₂) 5K1 0 0 120 WL MW
5 C5
pentagon
5 2 (5₂ 5₂) 10 WL MW
6 K6
Sk15-simplex
15 5 (6₅ 15₂) 6K1 0 0 720 WL
6 K2,2,2
Sk1 octahedron
12 4 (6₄ 12₂) 3K2 3 1 48 WL MW
6 K3,3 9 3 (6₃ 9₂) 2K3 6 2 72 WL MW
6 C6
hexagon
6 2 (6₂ 6₂) 0 12 WL
7 K7
Sk1 6-simplex
21 6 (7₆ 21₂) 7K1 0 0 5040 WL
7 C7
heptagon
7 2 (7₂ 7₂) 14 WL MW
8 K8
Sk17-simplex
28 7 (8₇ 28₂) 8K1 0 0 40320 WL
8 K2,2,2,2
Sk1 16-cell
24 6 (8₆ 24₂) 4K2 4 1 384 WL MW
8 2C4 8 2 128
8 K4,4
Ci₈(1,3)
16 4 (8₄ 16₂) 2K4 12 3 1152 WL MW
8 Q3= G(4,1)
= K4×K2
Sk1 cube
12 3 (8₃ 12₂) 48 WL MW
8 C8
octagon
8 2 (8₂ 8₂) 16 WL MW
9 K9
Sk1 8-simplex
36 8 (9₈ 36₂) 9K1 0 0 362880 WL
9 K3,3,3 27 6 (9₆ 27₂) 3K3 9 2 1296 WL
9 K3×K3Sk1 3-3 duoprism 18 4 (9₄ 18₂) 72 WL
9 C9
Enneagon
9 2 (9₂ 9₂) 18 WL MW
10 K10
Sk1 9-simplex
45 9 (10₉ 45₂) 10K1 0 0 3628800
10 K5×K2
Ci10(1,4)
20 4 (10₄ 20₂) 240 WL MW
10 K2,2,2,2,2
Sk1 5-orthoplex
40 8 (10₈ 40₂) 5K2 5 1 3840
10 2C5 10 2 200
10 K5,5 25 5 (10₅ 25₂) 2K5 20 4 28800 WL MW
10 G(5,2) 15 3 (10₃ 15₂) 120 WL MW
10 C10
pentagon
10 2 (10₂ 10₂) 20 WL MW
11 K11
Sk1 10-simplex
Sk1 11-cell
55 10 (11₁₀ 55₂) 11K1 0 0 39916800
11 C11
henagon
11 2 (11₂ 11₂) 22 WL MW
12 K12
Sk1 11-simplex
66 11 (12₁₁ 66₂) 12K1 0 0 479001600
12 K2,2,2,2,2,2
Sk1 6-orthoplex
60 10 (12₁₀ 60₂) 6K2 6 1 46080 WL
12 2C6 12 2 288
12 3C4 12 2 3072
12 K3,3,3,3 54 9 (12₉ 54₂) 4K3 12 2 31104 WL
12 K4,4,4 48 8 (12₈ 48₂) 3K4 18 3 82944 WL
12 2K3,3 18 3 10368
12 2K2,2,2 24 4 4608
12 K6,6 36 6 (12₆ 36₂) 2K6 30 5 1036800 WL MW
12 K4×K3 36 6 (12₆ 36₂) 144
12 K6×K2 30 5 (12₅ 30₂) 1440 WL MW
12 Sk1 icosahedron 30 5 (12₅ 30₂) 120 WL
12 K2,2,2×K2
= C4×K3
24 4 (12₄ 24₂) 768 WL
12 Sk1 (cuboctahedron) 24 4 (12₄ 24₂) 48 WL
12 C12 12 2 (12₂ 12₂) 24 WL MW

See also

References

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top